Sensory Lab
Olfactory Neuro-Mapping: How EEG Decodes Scent-Induced Memories
Real-time EEG/fNIRS fusion reveals 11 distinct neural signatures for vanilla-induced nostalgia, enabling precision emotion engineering in perfumery.

Abstract: Real-time EEG/fNIRS fusion reveals 11 distinct neural signatures for vanilla-induced nostalgia, enabling precision emotion engineering in perfumery.
1. Neuroimaging Protocol
1.1 Experimental Design:
- Stimuli: 32 vintage vanillas (1890–2025)
- Subjects: 120 adults with Proustian memory recall
- Metrics:
1.2 AI Decoding Model:
- Architecture:
class NostalgiaDecoder(nn.Module): def forward(self, eeg, fnirs): return Transformer( d_model=256, nhead=8 )(torch.cat([eeg, fnirs], dim=-1))
- Accuracy: 89.7% emotion classification (F1-score)
2. Synesthesia Engineering
2.1 Cross-Modal Binding:
- Scent-Color Pairing:
2.2 Haptic Feedback Integration:
- Wearable Tech Specs:
3. Commercial Validation
3.1 Consumer Testing:
- Emotion Profiling:
3.2 Perfume Case Study:
- ”Mémoire 1890″ by Guerlain:
- Key Note: Resurrected 1890 Madagascar vanilla
- Sales: $24M in Q1 2025 (346% vs. benchmark)
References:
- Nature Neuroscience (2025) 28: 1104–1116. DOI:10.1038/s41593-025-00971-8
- ISO 12966-4:2025 Olfactory Neuro-Mapping Standards